Coherent evidence from Aquarius and Argo for the existence of a shallow lowsalinity convergence zone beneath the Pacific ITCZ

نویسنده

  • Lisan Yu
چکیده

Aquarius observations feature a prominent zonal sea-surface salinity (SSS) front that extends across the tropical Pacific between 2–10 N. By linking to Argo subsurface salinity observations and satellitederived surface forcing datasets, the study discovered that the SSS front is not a stand-alone feature; it is in fact the surface manifestation of a low-salinity convergence zone (LSCZ) located within 100 m of the upper ocean. The near-surface salinity budget analysis suggested that, although the LSCZ is sourced from the rainfall in the Inter-tropical convergence zone (ITCZ), its generation and maintenance are governed by the wind-driven Ekman dynamics, not the surface evaporation-minus-precipitation flux. Three distinct features highlight the relationship between the oceanic LSCZ and the atmospheric ITCZ. First, the seasonal movement of the LSCZ is characterized by a monotonic northward displacement starting from the near-equatorial latitudes in boreal spring, unlike the ITCZ that is known for its seasonal north-south displacement. Second, the lowest SSS waters in the LSCZ are locked to the northern edge of the Ekman salt convergence throughout the year, but have no fixed relationship with the ITCZ rain band. Collocation between the LSCZ and ITCZ occurs only during August-October, the time that the ITCZ rain band coincides with the Ekman convergence zone. Lastly, the SSS front couples with the Ekman convergence zone but not the ITCZ. The evidence reinforces the findings of the study that the Ekman processes are the leading mechanism of the oceanic LSCZ and the SSS front is the surface manifestation of the LSCZ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salinity fronts in the tropical Pacific Ocean

This study delineates the salinity fronts (SF) across the tropical Pacific, and describes their variability and regional dynamical significance using Aquarius satellite observations. From the monthly maps of the SF, we find that the SF in the tropical Pacific are (1) usually observed around the boundaries of the fresh pool under the intertropical convergence zone (ITCZ), (2) stronger in boreal ...

متن کامل

Variation of Lithosphere-Asthenosphere boundary beneath Iran by using S Receiver function

The current geological and tectonic setting of Iran is due to the ongoing convergence between the Arabian and Eurasian Plates, which resulted in the formation of the Iranian plateau, mountain building, extensive deformation and seismicity. The Iranian plateau is characterized by various domains including the continental collision and the oceanic plate seduction. Based on S receiver functions ar...

متن کامل

VARIABILITY OF THE MARINE ITCZ OVER THE EASTERN PACIFIC DURING THE PAST 30,000 YEARS Regional Perspective and Global Context

The Intertropical Convergence Zone (ITCZ) is manifested as a circum-global atmospheric belt of intense, moist convection and rainfall, marking the confluence of the northern and southern trades and the rising branch of the Hadley cell. It regulates the hydrologic cycle over the tropical continents and interacts tightly with the tropical oceans, notably with the seasonal appearance of the equato...

متن کامل

Large-Scale Atmospheric Forcing by Southeast Pacific Boundary-Layer Clouds: A Regional Model Study

A regional model is used to study the radiative effect of boundary layer clouds over the Southeast Pacific on large-scale atmosphere circulation during August–October in 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary la...

متن کامل

Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum

Paleoclimate proxy evidence suggests a southward shift of the Intertropical Convergence Zone (ITCZ) during times of Northern Hemisphere cooling, including the Last Glacial Maximum, 19–23 ka before present. However, evidence for movement over the Pacific has mainly been limited to precipitation reconstructions near the continents, and the position of the Pacific marine ITCZ is less well constrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014